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Abstract  0 A rigorous treatment of linear compartmental systems is 
presented, which allows the input rate of drugs into the systemic circu- 
lation to be evaluated without assuming a specific kinetic model. The 
method allows the input to be evaluated in the presence or absence of any 
combination of intravenous bolus input and infusion input. Only data 
for the blood drug concentration are required; there are no requirements 
for specific sampling times. Applications of the equations are given in 
several examples. The input rate is evaluated with data obtained from 
a disposition experiment involving an intravenous bolus or zero-order 
infusion input and an experiment involving the input to he evaluated. 
The two experiments can be merged so that  the input can be evaluated 
without a washout period between the two drug administrations. The 
equations also enable model-independent calculations of the optimal drug 
input control that produces any desirable drug concentration profile. The 
approach is a useful deconvolution method for any linear pharmacoki- 
netic system where the impulse response can be approximated by a 
polyexponential expression. 
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The study of drug input plays such a fundamental role 
in biopharmaceutics that i t  has been suggested that  bio- 
pharmaceutics be defined as the science of drug input (1). 
Numerous methods of evaluating the pharmacokinetics 
of drug input have been suggested (2-14), and they can be 
divided into model-dependent and model-independent 
methods. 

The model-dependent methods assume a specific model 
for drug input (e.g. ,  first-order or zero-order input) and a 
specific model for drug disposition (e.g. ,  one- or multi- 
ple-compartment models). The blood profile of the drug 
is analyzed according to the model equation and the spe- 
cific input parameter(s) that are determined graphically 
or by a regression technique (15). These methods often do 
not give a reliable estimate of the input kinetics because 
they are defined too specifically with respect to  drug dis- 
position and because the input is considered to be a simple 
process that can be described in simple mathematical 
terms (e .g . ,  zero- and first-order input). 

With the many variables affecting the input, particularly 
in oral administration, it seems unlikely that the input can 
be approximated well in such simple terms. Nevertheless, 
it is not uncommon to have good agreement between such 
model equations and drug level data, as judged by good- 
ness-of-fit when the equations are fitted to the data. 
However, the good f i t  may be explained by an inherent 
flexibility of the equations used. The equations are derived 
based on a model for the input and a model for the drug 
disposition. If the input model is wrong, the flexibility of 
the equation used may compensate for this error in that  

the disposition parameters in the iterative curve-fitting 
procedure take values that do not reflect the disposition 
but provide a good fit. Therefore, it is not uncommon when 
using model-dependent methods to obtain parameter 
values of unrealistic magnitude, even when the curve fit- 
ting is satisfactory. 

Certain methods partly eliminate this problem by 
combining information about the drug's disposition, ob- 
tained from separate intravenous bolus or infusion data, 
with data resulting from the input to be evaluated. Among 
these methods are the deconvolution methods (9-14), 
which have the additional advantage of not assuming a 
model for the input. 

This paper presents a novel method of input analysis; 
it is applicable to systems with central input and to certain 
systems with noncentral input. The method is model in- 
dependent in that it does not assume any specific disposi- 
tion model. The  method enables an unknown input to  be 
evaluated quantitatively in the presence or absence of any 
combination of intravenous bolus and infusion input. The 
method requires only blood drug level data with no special 
requirements for sampling times. 

BACKGROUND 

Drug input in a subject is studied most accurately by following the 
blood concentration-time profile. The aim of this theoretical analysis 
is to derive a suitable method for analyzing blood profiles to quantitate 
an unknown. input. 

The total input in the sampleable compartment is the sum of two kinds 
of input: the primary and the secondary. The primary input is the input 
into the sampleable compartment of those drug molecules that arrive 
there for the first time. The secondary input is the input into the sam- 
pleable compartment of those drug molecules that previously have been 
present there. The primary input, the object of this analysis, is of interest 
for bioavailability studies and for the evaluation of drug delivery systems. 
The secondary input encompasses ordinary back-transfer from reversible 
distributions between the sampleable compartment and other com- 
partments, as well as previously presented cyclic processes (recycling) 
(16). 

The present method uses two fundamental properties of linear re- 
sponse systems: the superposition property and the convolution integral 
property. These properties can be verified only for a known input, ie . ,  
an input made directly into the sampleable compartment. However, the 
primary input to be evaluated is not a direct input, so it is necessary to 
assume or verify that the primary input is noninteracting. It must not 
change the basic linear response property of the system that is evaluated 
from a direct input but is used to calculate an indirect input. 

This requirement is basic for any model-independent and most 
model-dependent approaches. Its importance cannot be emphasized 
enough since several factors in the firstbpass transfer of a drug may cause 
a significant interaction. Little attention has been given t.o this issue. The 
justification of linear pharmarokinetic principles in drug absorption 
studies often has heen limited to verification of the superposition prop- 
erty. However, it is equally important to test for interaction, e.g., by 
comparing the concentration profiles of a laheled drug introduced directly 
into the sampleable compartment in the absence and in the presence of 
absorption of the unlabeled drug. 
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Scheme I-Effectiue input in a pharrnacokinetic system with noncentral 
input 

In the context of the classical linear compartmental systems discussed 
previously (16), a noninteracting input is either a direct input or an input 
reaching the sampleable compartment from one or more irreversibly 
connected donor subsystems (Scheme I). 

The following theoretical analysis shows how a noninteracting primary 
input (subsequently to be referred to as the input) can be rigorously 
evaluated (blood = sampleable compartment) when blood level data from 
a known input such as an intravenous bolus or zero-order infusion input 
are available. The input may be of any linear or nonlinear kinetic form. 
Although the analysis forms a link to classical linear compartmental 
pharmacokinetics (16), it is not limited to such systems. The analysis 
applies to any linear response system where the unit impulse response 
is appropriately approximated by a polyexponential function with real 
and/or complex (conjugate) time coefficients. 

In the context of compartmental principles (161, ,the method allows 
the kinetic processes in irreversibly connected donor subsystems to be 
of any nonlinear form. In the context of general linear system theory, the 
method allows individual kinetic processes to be of nonlinear form as long 
as the total effect of all of the processes results in an approximately linear 
input-response relationship. 

THEORY 

In a general treatment of linear compartmental pharmacokinetics, the 

x = L - l ( D v )  (Eq. 1) 

where xi ,  the i th component of the vector x, is the amount in the i th  
compartment a t  time t; and u,. the i th  component of the input vector v, 
is the sum of the initial amount in the ith compartment and the Laplace 
transform of the external input rate (i.e., not coming from other com- 
partments) into the i th  compartment. 

The disposition is defined uniquely by the disposition matrix, D. The 
operator L-' denotes the inverse Laplace transform operator. In the case 
of central input only, the amount in the central compartment is given 
by: 

X I  = L-'(dllul)  (Eq. 2) 

where dll is the 1,l  element of the disposition matrix. When ageneralized 
function approach is used in the mathematical analysis, continuous and 
discontinuous input can be superimposed so that the central input, u l ( t ) ,  
is written as: 

following matrix-vector equation was presented (16): 

ul(t)  = f ( t )  + fbol(t) + finf(t)  (Eq. 3) 

where f ( t )  is the unknown input rate to be determined and /bol(t) and 
finAt) are the known bolus input rate and the infusion input rate, re- 
spectively. It is most accurate to determine f ( t )  in the absence of other 
input. However, this may not always be possible. The following treatment 

enables f ( t )  to be determined in the presence or absence of bolus and 
infusion input. 

The bolus input component of Eq. 3 is described in terms of the unit 
impulse function or Dirac delta function, 6 ( t ) ,  by: 

R 

,= 1 
fbol(t) = ,x qib(t - T i )  R = 1,2,. . , N (Eq. 4) 

where qi is the quantity of the ith intravenous bolus, ~i is the time for the 
i th  bolus injection, R is the highest integer for which 7 R  < t is satisfied, 
and N is the number of bolus inputs. If 7 R  < t cannot be satisfied for any 
R, then R is defined as zero. Therefore, the right side of Eq. 4 becomes 
zero by definition. The Laplace transform (bars denote transformed 
functions) of Eq. 3 is: 

(Eq. 5) u1(s) = f ( s )  + ,x qie-ris + finf(s) 
N 

L -  1 

- 

so that Eq. 2 can be written as: 

where the conversion from the amount, X I ,  to the concentration, c ( t ) ,  has 
been done by the central volume term, V .  The concentration profile 
following a single initial intravenous bolus input is: 

c*(t) = V-'L-'(dllq*) (Eq. 7) 

where * distinguishes between the separate intravenous bolus experiment 
and the input experiment in further derivations. The transforms of Eqs. 
6 and 7 are, respectively: 

When dii = E*(s) /q*  from Eq. 9 is substituted into Eq. 8, Eq. 8 be- 
comes: 

Therefore, the transform of the input rate can be written as: 

(Eq. 11) 

where: 
N 

,=I  
g(s) = q*F(s) - C*(s) ,x q,e-r18 - F*(s)fi,f(s) (Eq. 12) 

To facilitate a suitable solution of Eq. 11, i t  can be written as: 

f ( s )  = sl[sg(s)]K(s)} (Eq. 13) 

where: 

K ( s )  = s-ZC*(s)-' (Eq. 14) 

Since ug(0) = 0, it follows that: 

L-"sg(s)] = g ' ( t )  (Eq. 15) 

I t  will be shown later that c*(t) has a functional form such that 
L-'[s-*S* (s)-'] exists. Thus, according to the convolution theorem, Eq. 
13 can he transformed to: 

According to the Leibnitz rule, Eq. 16 can be written as: 

f ( t )  = $,'g'(u)h'(t - u)du + g ' ( t )h(O)  

Integrating by parts and noting that g(0)  = 0, Eq. 17 becomes: 

(Eq. 16) 

(Eq. 17) 

/ ( I )  = h'(O)g(t) + h(O)g'( t )  + L ' g ( u ) h " ( t  - u)du (Eq. 18) 

Equation 18 forms the basis for further deviations, leading to a final, more 
specific expression for the input, f ( t ) .  The following sections deal with 
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the problem of deriving specific expressions for h(O), h’(O), g(O), g’(t), 
and h”( t )  in Eq. 18. 

If the system has distinct eigenvalues, then the impulse response is 
given by: ,= 1 i=1 

According to Eq. 25, h ”  in Eq. 18 is given by: 
n-1 n-1 

h”(t - u )  = / 3 ~ E , e @ J e - @ ~ u  = x b,efJsfe-fliu (Eq. 31) 

so that: 

(Eq. 19) 

(Eq. 20) 

The relationship between the macroparameters in Q. 19, the coefficient 
matrix, and the fundamental matrix of the compartmental system is given 
in the Appendix. 

According to Eq. 20, Eq. 14 can be written as: 

(Eq. 21) 

so that, according to the initial value theorem and L’HBspital’s rule, h(0) 
in Eq. 18 is: 

h ( ~ )  = Iim sK(s) = ai (Eq. 22) 
s-m I - I  

Similarly, it can be shown that: 

i: aixi - 
h ’ ( ~ )  = lim sh’(s) = lim [szh(s)  - sh(0)j = -- (Eq. 23) 

[ ,f ailz 
S-- S-- 

1‘1 

The h( t )  function can be written, according to Eq. 21, as: 

fi (s - hi) 
i = l  0%. 24) h ( t )  = L-1 

where the numerator and denominator are polynomials of n th  and (n + 
1)th degree, respectively. Therefore, according to Heaviside’s expansion 
theorem, Eq. 24 can be written as: 

n-1 

L= 1 
h ( t )  = A l t  + Az + x Eie@if (Eq. 25) 

only and the {/3;\i‘-’ are the roots where A1 and A2 are functions of {a,, 
of the ( n  - 1)th degree polynomial: 

which leads to: 

(Ea. 28) i= I E.. = 

The first term in the denominator of Eq. 28 is equal to zero, according 
to the property of by since Q(P,,) = 0 (Eq. 26). Therefore, after further 
simplification, Eq. 28 can be written as: 

For further simplification in later derivations, it is convenient to intro- 
duce b,. = /3:Ev so that: 

(Eq. 30) 

By substituting h”(t - u) ,  h’(O), and h(O), as given by Eqs. 31,23, and 
21, respectively, into Eq. 18, this equation becomes: 

(Eq. 32) 
This equation can also be written: 

where: 
n-1 

i= 1 
z ( t )  = x biefJit (Eq. 34) 

and z(t)*g(t) is the convolution of z ( t )  andg(t) .  
The g(t)  function remains to be derived and substituted into Eq. 32 

to yield the final expression for the input rate, f ( t ) .  The g ( t )  function is 
obtained as the inverse transform of Eq. 12. I t  is useful to partitiong(t) 
into a basic component, a bolus component, and an infusion component, 
according to  their origin in Eq. 12, so that it can be written as: 

g(t)  = go(t) - gtml(t) - ginkt1 (Eq. 35) 

(Eq. 37) 

(Eq. 38) 

When each of the three components ofg( t )  is substituted forg(t)  in Eq. 
32, this substitution leads to three corresponding components of f ( t ) :  

f ( t )  = UO(t) - Ubol(t) - Uindt) 0%. 39) 

1 I r = l  

N 
gb i ( t )  = L-’ F*(s) , x q i e - ~ +  

ginAt)  = L-’[~*(s)fint(s)] 

where Uo(t) is the basic function, and Ubl(t) and UinAt) are the bolus 
corrector function and the infusion corrector function, respectively, be- 
cause these functions are subtracted from the basic function if the un- 
known input rate, f ( t  ), is evaluated in the presence of bolus or infusion 
input. 

The basic function, Udt ) ,  is obtained by substituting q*c( t )  for g(t) 
in Eq. 32, which yields: 

According to Eq. 20, Eq. 37 can be written as: 

which, when substituted for g( t )  in Eq. 32, yields: 
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The last two terms of Eq. 42 are obtained from: 

R n-1 
- x qm .x b,e@i(f-Tm) (Eq.43) 

It can be shown that the sum of the first three terms of Eq. 42 is zero': 
m-1 1-1  j -1  Aj  P i  

The fact that  the last term of Eq. 42 also equals zero is seen from the in- 
nermost summation term, which can be written as: 

j- 1 

It is apparent from Eq. 26 and the property of P i  that  this term is zero 
because: 

f a, A (Pi - Am) = Q(Pi)  = 0 (Eq. 46) 

Therefore, the right side of Eq. 42 is zero; i .e . ,  the bolus correction 
zi j- 1 

function is zero: 

Ubol ( t )  = 0 (Eq. 47) 

Therefore, the input, f ( t )  (Eq. 39), can be evaluated in the presence of 
the bolus input without any correction. 

Equation 38 can be written according to Eq. 9 as: 

(Eq. 48) 

According to Eq. 2, the term L-'[dl&(s)]lV is the blood level, c&), 
resulting from the infusion input, fin&), so Eq. 48 can be written as: 

g i n d t )  = q*cinf(t)  (Eq. 49) 

The infusion correction function, U i n A t ) ,  is obtained by substituting 
g i n d t )  for g ( t )  in Eq. 32, which gives: 

L - ' [ d l J i n A s ) ]  

V gidt) = q* 

U i n d t )  = q* 

(Eq. 50) 

If the infusion input, finf(t), is considered an unknown input to be eval- 
uated in the absence of other inputs, then by substituting ci,f(t) for c ( t )  
in Eq. 40, finf(t) is given by: 

1 

The derivations that show that %. 44 holds for n 2 1 are extensive. They are 
omitted because they are not crucial for understanding the theoretical ap- 
proach. 

By comparing Eqs. 50 and 51, it follows that: 

U i n d t )  = f indt )  (Eq. 52) 

Thus, the infusion correction function is the rate of infusion input. 
Analogous to Eqs. 48 and 49, it is seen that ghi(t) = q*cboi(t), where 
c b l ( t )  is the drug level resulting from bolus input only. From Eq. 47, it 
follows that when Cbol(t) is substituted for c ( t )  in Eq. 40, the basic func- 
tion becomes zero. 

To unify these findings in a simple way, i t  is useful to define the 
input-generating function, J.: 

r n  

(Eq. 53) 

This function generates the input from the drug level profile, c ( t ) .  I t  
is evident from above that the input-generating function has the following 
remarkable properties: 

$ l C h l ( t ) l  = 0 t # T ,  (Eq. 54) 

J.[cinf(t)l = f i n d t )  (Eq. 55) 

I l . [c(t)]  = f ( t )  -t f indt )  t # Ti (b. 56) 

Equation 54 states that there is no drug input between the bolus input 
in an experiment only involving bolus input. Equation 56 states that the 
input-generating function generates the sum of all nonbolus input. In- 
dependent of any bolus input, the drug input rate therefore is given by 
the input-generating function corrected for the rate of superimposed 
intravenous infusion input that  may or may not be present 

1 

i- 1 

RESULTS AND DISCUSSION 

If the eigenvalues of the A matrix are distinct, then the impulse re- 
sponse function always is given by Eq. 19. Systems with cyclic structures 
may give rise to complex conjugate eigenvalues. However, the method 
still can be applied. An eigenvalue is either zero, due to a subsystem being 
closed, or is functionally related to the dynamic processes. The input 
analysis deals with the transport and transition dynamics of drug mole- 
cules in a fairly random state. Consequently, nonzero eigenvalues show 
a stochastic behavior; therefore, the statistical probability of two nonzero 
eigenvalues being equal is zero. 

It is evident that the rank of the coefficient matrix for a closed system 
is full rank minus one and that a lower rank than that contradicts the 
randomness condition. Therefore, in an applied ( i .e . ,  not theoretical) 
closed system, there is one and only one zero eigenvalue. Open applied 
systems are of full rank with no zero eigenvalues (17). The eigenvalues 
for any applied linear compartmental system are distinct and give rise 
to a unit impulse response as given by Eq. 19. Therefore, the method of 
analysis is applicable to any applied linear compartmental system. 
However, the method is not applicable to every theoretical linear com- 
partmental system because of the possibility of nondistinct eigenvalues, 
which would result in an equation different from Eq. 19. 

The method also could have been derived from the linear system theory 
for linear systems, where the impulse response can be approximated by 
a polyexponential expression. As such, it represents a new deconvolution 
approach. The present derivation method is valuable because it forms 
a link between classical pharmacokinetics and the linear system approach, 
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Figure 1-Summary of model-independent approach of evaluating the 
drug input rate. The drug is given intravenously either QS an initial 
bolus, q* (A) ,  or alternatively as a zero-order infusion (B) to  Q subject 
(IS Q nonprecipitating solution. Equation 19 or Eqs. 75 and 76 are fitted 
to the respective drug concentration data togiue the parameters lai, Xi]? 
and q* ( A  and B ) .  The rate of drug input into the blood from Q drug 
delivery system can be evaluated in the same subject in the absence of 
other input (C) or in the presence of any combination of intravenous 
bolus and infusion input (0). An appropriate arbitrary function, c(t) 
(e.g., a least-squares spline function), is fitted to the data from the input 
experiment (C and 0). The rate of input is calculated from the pa-  
rameters {ai, Ail?, q*, and the drug level profile, c(t), according to the 
input-generating function and corrected for any superimposed infusion 
input (E).  

thereby enabling classical pharmacokinetics t o  be analyzed in a new 
context. 

The input rate can be determined quantitatively in the absence or 
presence of any combination of intravenous bolus input and infusion 
input. 

The procedure for the evaluation of an input rate is mathematically 
defined by Eqs. 19, 26, 30, and 58. These equations are used as follows. 
Equation 19 is fitted to the drug level data from a single intravenous bolus 
input, q*,  to give [a,, A,]p (Fig. 1A). If n > 1, these parameters are inserted 
into Eq. 26 to give the auxiliary parameters, lfi,]?-’, which when subse- 
quently inserted into Eq. 30 give another set of auxiliary parameters, 
[b, I:-’. An arbitrary function is fitted to the drug level data from the input 
to be evaluated (Fig. 1C). The arbitrary function is denoted briefly as c ( t )  
in the derivations. Since both b and Pare functions of {a,, X,l7, only q*, 
la,, A,};, and c ( t )  are required to calculate f ( t )  from Eq. 58. The input- 
generating function, +, is uniquely defined from the disposition experi- 
ment by the parameters q* and la,, A,]?. 

Which arbitrary function, c ( t ) ,  is chosen to estimate the true drug level 
profile depends on the accuracy of the data and their general shape as 
well as any assumptions made about the variation and smoothness of the 
input process. The method by which a chosen function is fitted to the data 
should relate to assumptions made about the statistical properties of the 
errors in the data. For a fairly smooth input process, the best general 
choice of a function seems to be a weighted or unweighted least-squares 
spline function. Such a function is particularly suitable because of its 
smoothness, great flexibility, and optimal properties in estimating the 
rate of change [the c ’ ( t )  term in Eq. 581 and the fact that  it readily de- 
scribes the disturbance(s) caused by bolus input (Fig. 1D). Due to the 
linear nature of the parameters defining the spline function, it also has 
desirable computational and statistical properties (18, 19). 

If the drug level data are sampled frequently and are not too erratic, 
then a fitting of an ordinary polynomial may be quite appropriate. T o  
avoid bias in the estimation of the drug level and to avoid an erratic be- 
havior of the first derivative, it has been suggested that the degree of 
polynomial fitted by least squares should not exceed two times the square 
root of the number of data points (20). Use of exponential expressions 
for c ( t )  can be troublesome because of the problem of getting initial pa- 
rameter estimates and because of the computational problems associated 

with nonlinear curve fitting (21). If the drug levels range over several 
orders of magnitude, it is recommended that a logarithmic transformation 
or other suitable transformation be applied to the data before the curve 
fitting (22). 

Although Eq. 58 involves an integral, no computational problems 
should be caused in the evaluation of f ( t )  since the functions likely to be 
used for c ( t ) ,  such as spline functions, ordinary polynomials, and expo- 
nential expressions, lead to simple algebraic expressions without an in- 
tegral that can be evaluated readily and exactly. Although the equations 
used to  calculate f ( t )  may seem complex, their use is straightforward. 

Example 1, n = 1-This example represents a drug that behaves in 
a subject, following a single intravenous bolus, q*, according to a one- 
compartment model so the intravenous bolus blood level data are de- 
scribed by: 

c * ( t )  = aehf (Eq. 59) 

The equation necessary for calculating the input rate of the drug ad- 
ministered to the same subject is simplified in this case with n = 1, since 
the summation term involving a summation to i = n - 1 is zero by defi- 
nition. Thus, in the absence of intravenous infusion input, the input rate 
is given by: 

It is of interest to compare this equation with the Wagner-Nelson 
model-independent method of evaluating the absorption rate in a one- 
compartment system. The Wagner-Nelson equation is (15): 

At = V[c( t )  + K s , ’ c ( t ) d t ]  (Eq. 61) 

so that: 

dA,/dt = V[c’(t)  + Kc( t ) ]  (Eq. 62) 

where At is the amount absorbed between time zero and time t and K is 
the first-order elimination rate constant. Since dAtldt = f ( t ) ,  K = - X  
and V = q*/a, Eq. 62 can be written the same as Eq. 60. Therefore, for 
n = 1, the input-generating function reduces to an expression that is es- 
sentially identical to the Wagner-Nelson equation. 

Example 2, n = 2-In this case, the intravenous bolus data are de- 
scribed by: 

(Eq. 63) c*( t )  = aleXlt  + a2eXzt a; > 0, Xi  < 0 
Equation 26 is used to obtain the auxiliary parameter, 81: 

Q ( s )  = a1(s - A,) + ap(s - XI) = (a1 + a2)s - (alX:! + asX1) 

(Eq. 64) 

so that: 

(Eq. 65) a d z  + 
PI  = 

Q I  + a2 

The other auxiliary parameter, bl,  is obtained from P I  using Eq. 30: 

a2 +-- b l =  ~- a1 1 
I(PI - X I )  ( P I  - Xz) ( P I  - A d  ( P I  - X I )  

The input-generating function then becomes: 

x S , ’ c ( u )  exp [ - + a2X1u] du} (Eq. 67)  
a1 + a2 

Example 3, n = 3- The intravenius bolus data are described by: 

c * ( t )  = a l e X l t  + a2eXZt + a3eXQt a, > 0, Xi < 0 (Eq. 68) 

The n - 1 = 2 auxiliary parameters, P 1  and P 2 ,  are obtained as the two 
roots of Eq. 2 6  

Q ( s )  = al (s  - X d ( s  - X d  + a d s  - A d s  - h3) 
+ Q 3 ( S  -  hi)(.^ - X p )  (Eq. 69) 
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Figure 2-Summary of input analysis based on a merged bolus and 
input approach. A n  initial intravenous bolus solution of the drug is 
given, and the drug level is followed for a sufficiently long time, t i ,  to  
get proper estimates of {ai, hi): by f i t t ing Eq. 19 to the drug level data 
for 0 < t 5 tl. Then,  the  drug delivery system is administered (tL) and 
the drug level is followed for the  appropriate length o f  t ime ftz). T h e  
input rate is calculated from the  input-generating function. The  arbi- 
trary function, c(t), fitted to  the data must consist of Eq. 19 for the time 
period 0 < t I tl  and some other appropriate function (e.g.. a least- 
squares spline function) for tl < t I tz. This approach of input analysis 
is powerful because it does not require a washout period between the 
disposition and the input experiments and &cause errors arising from 
changes in the subject's drug disposition with time are reduced to a 
minimum by bringing the two drug administrations close together. 

so that: 

and similarly: 

The input-generating function is: 

where'bl, bp, PI, and 0 2  are described in terms of la,, Xi):. 
Merged Bolus and  Input  Approach-The fact that  the input-gen- 

erating function automatically corrects for the disturbance in the drug 
level profile bolus input makes it particularly suitable for performing an 
input analysis in a single experiment. For example, it may be of interest 
to study the input rate from an oral administration. This study can be 
done by giving an initial intravenous bolus solution of the drug (Fig. 2) 
and following the drug profile for a sufficiently long time, t 1, to get proper 
estimates of {a,, X,)? by fitting Eq. 19. Thereafter, the oral dosage form 
of the drug is administered and the drug level is followed for the appro- 
priate length of time, t2. 

The input rate (t  > t 1) is calculated from the input-generating function. 
The arbitrary function, c ( t ) ,  representing the data must consist of Eq. 
19 for 0 < t I t l  and of some other appropriate function (e.g., a least- 
squares spline function) for t l  < t 5 tz .  This input analysis approach is 
powerful because it does not require a washout period between the dis- 
position and the input experiments and because errors arising from 

Y' tl TIME 
L ?-- INPUT + K; - 

INFUSION DRUG 
Figure 3-Summary of input analysis based on a merged infusion and 
input approach. A zero-order ( K  3 infusion is given from t = 0 to t = T*, 
and the drug leuel is allowed to drop to a proper level before the drug 
delivery system is administered at tl. Equations 75 and 76 are fitted 
simultaneously to the data for 0 < t I r* and T* < t I t l ,  respectively, 
to give the parameters lai, Xi); and q*. The  rate of drug input (t > t3 
is Calculated from the input-generating function. T h e  arbitrary func- 
tion, c(t), must consist of Eq. 75 (with the  estimated parameters) for 0 
< t 5 T*, of Eq. 76 for T* < t I tl, and of some suitable function fe.g., 
a least-squares spline function) for  t > t l .  

changes in the subject's drug disposition with time are reduced to a 
minimum by bringing the two drug administrations close together. 

Alternative Approach to  Intravenous Bolus Input-It is assumed 
that the intravenous bolus administered to estimate [a,, A,}; is given in 
a solution that does not precipitate on dilution with the blood so that it 
is available immediately to the systemic circulation. Some drugs may be 
so slightly soluble or so toxic that it is not feasible to administer an in- 
travenous bolus dose to estimate la,, A,}?. However, this study can be done 
by an alternative approach. I t  can be proven that if an intravenous bolus, 
q*, produces a concentration profile in a linear pharmacokinetic system 
as described by Eq. 19, then the profile resulting from a zero-order ( K ; )  

infusion from t = 0 to t = T* in the same system is given by: 
n a  

c : ( t )  = 5 x _I [ehLt - 11 t 5 T* (Eq. 75) 
q* 1 - 1  A, 

K ;  n a exit 
q * r - 1  A, 

and: 

&(t) = - x L [ 1  - e-Lr*] t > T* (Eq.76) 

Thus, q* and {a,, A,}? required for the calculation of the input rate are 
obtained by fitting Eqs. 75 and 76 to the infusion data. 

Merged Infusion and  Input  Approach-The infusion disposition 
experiment can be merged with the input experiment by stopping the 
infusion after the proper length of time (r*,  Fig. 3) and then letting the 
drug level drop to a proper level before the drug delivery system is ad- 
ministered (tl, Fig. 3). The arbitrary function, c( t ) .  fitted to the data must 
consist of Eq. 75 (using the estimated parameters) for 0 < t I r* and Eq. 
76 for T* < t I t l  and an appropriate arbitrary function for the drug input 
interval t > tl  (Fig. 3). The rate of drug input, t > t 1, is calculated from 
the input-generating function (without infusion correction). The rate 
of drug input, t < t 1, calculated according to Eq. 58 [with flnr(t)  = K :  for 
0 < t < T*] is zero if the process has been correctly defined mathemati- 
cally. This can be used to check the computations when the method is 
implemented on a computer. 

Drug  Input  Control-Although the presented analysis is directed 
a t  a model-independent evaluation of drug input, it is equally applicable 
to control of drug input. Any desirable drug profile may be produced by 
a controlled intravenous input according to the equations presented. The 
application of the theory to model-independent optimized drug input 
is under investigation. 

Although the equations used to calculate the input rate may appear 
complex, they are presented in a general form that readily allows them 
to be programmed and implemented on a computer. A general-purpose 
drug input analysis program can be developed from the equations pre- 
sented. Ultimately, the investigator will need only to supply the blood 
level data and information about the experimental design, and the pro- 
gram will automatically compute and plot the drug input rate profile. 

The practical application of the drug input analysis presented appears 
versatile and powerful. It provides some important tools for the evalua- 
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tion and design of drug delivery systems. In particular, it enables the rate 
and extent of drug bioavailability to be evaluated in a more intrinsic and 
accurate way than previous methods for linear systems with a polyex- 
ponential impulse response. 

APPENDIX 

The system of n linear differential equations describing the kinetics 
after an initial bolus input into a linear pharmacokinetic system is 
(16): 

x‘ = Ax (Eq. A l )  

where the square matrix A contains the first-order intercompartmental 
rate constants and the elimination rate constants (16). If the eigenvalues 
of A are distinct, then the solution of Eq. A1 is: 

x = P exp (tA)P-lx(O) (Eq. A2) 

where A is a diagonal matrix of the eigenvalues {A;]? of A and the columns 
of P are the corresponding eigenvectors. 

From Eq. A2, the following equation is obtained: 

where: 

Q l ]  = piJ[p;’X(o)]J (Eq. A4) 

An initial bolus input in the central compartment is described by x(0) 
= (q*, 0, 0, . . ., O ) ,  which according to Eqs. A3 and A4 leads to: 

Thus, a, in Eq. 19 is given by: 

(Eq. A6) 

Note that: 

L-lD = cb(t) = P exp (tA)P-’ (Eq. A71 

where 9(t), introduced previously (16), is the fundamental matrix of the 
pharmacokinetic system. 

NOTATIONS2 

a, = defined by Eq. 19 
A1, A2 = defined by Eq. 25 

At = amount absorbed between t = 0 and time t 
A = coefficient matrix, Eq. A1 
b, = auxiliary parameter defined in terms of {a,, A,}y by Eq. 

0, = auxiliary parameter defined in terms of {a,, A,\; by Eq. 

c ( t )  = arbitrary function(s) describing the drug concentration 
c * ( t )  = function (Eq. 19) describing the drug concentration data 

following an initial intravenous bolus input, 9* 
c t ( t )  = drug concentration resulting from a zero-order infusion 

starting a t  t = 0 
c b o l ( t )  = drug concentration resulting from one or more intravenous 

bolus input 
c,,f(t) = drug concentration resulting from continuous or discon- 

tinuous intravenous infusion input 

30 (see 8,) 

26 

d,, = i - ,  j t h  element of disposition matrix D 
D = disposition matrix 

6 ( t )  = Dirac delta function 
e = 2.71828.. . 

E, = expression defined by Eq. 27 
f(t) = rate of input to be evaluated (amount per unit of time) 

fbo1(t) = bolus input component 

Bars denote Laplace transforms. bold-faced capital letters denote matrixes, 
and bold-faced noncapital letters denote vectors. 

finkt) = rate of intravenous infusion input 

g h l ( t )  = bolus component ofg(t)  
gin&) = infusion component of g ( t )  

g(t) = function whose Laplace tranform is defined by Eq. 12 

go(t) = component of&) corresponding to f ( t )  
h( t )  = function whose Laplace transform is defined by Eq. 16 

i = index variable 
j = index variable 

K = first-order elimination constant in a one-compartment 
model 

K; = zero-order infusion rate from t = 0 t o t  = T*  used in the 
disposition experiment and in the merged infusion and 
input approach 

A, = defined by Eq. 19, i th  eigenvalue of matrix A 
L, L-’ = Laplace and inverse Laplace transform operator 

A = diagonal matrix defined by Eq. A3 
rn = index variable 
n = defined by ICq. 19 
N = number of bolus input 
Y = index variable 

pV = i-, j t h  element of the eigenvector matrix 
p, = i th  column vector of the eigenvector matrix 
P = eigenvector matrix defined by Eq. A2 
K = product operator 

9* = bolus amount injected intravenously initially in the dis- 
position experiment resulting in a drug level described by 
Eq. 19 

9, = i th  bolus injected intravenously 

R = highest integer for which T R  < t is satisfied or defined as 

s = complex domain variable 
t = time 

Q ( s )  = auxiliary function defining PI (Eq. 26) 

zero if inequality cannot be satisfied 

t l ,  t 2  = defined in Fig. 2 
T ,  = time when the i th  intravenous bolus is given 
T *  = time for zero-order infusion stop (Fig. 3) 

Uo(t)  = basic function 
Ubol(f) = bolus corrector function 
U,,,-(t) = infusion corrector function 

v = input vector 
u1 = first element of input vector 
V = constant with dimension of volume 
x = vector containing the amounts in the n compartments a t  

time t 
x1 = first element of vector x 
y = vector defined by Eq. A6 

z ( t )  = auxiliary function defined in terms of {a,, A,}? by Eq. 34 

cb(t) = fundamental matrix of pharmacokinetic system 
(see b, and 8,) 

O[c(t)] = input-generating function 
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Abstract The investigated method is based on an exact mathematical 
solution to the deconvolution problem of linear pharmacokinetic systems 
with a polyexponential impulse response. The accuracy of the method 
is determined only by how well the curves fitted to the intravenous and 
absorption data represent the true drug level. Consequently, the method 
enables objective evaluation of the input. It permits the user to assess 
whether discrepancies in a calculated input are due to an improper data 
representation, as judged from the fitted curves, to the inherent nature 
of the data, or to a violation of the pharmacokinetic assumptions. The 
method is compared to another method using simulated data containing 
various degrees of random noise. The accuracy of the two methods was 
not significantly different and was of the same magnitude as the noise 
level of the data. The theoretical properties of the two methods and their 
expected performance in various pharmacokinetic situations are dis- 
cussed. The method is applied to pentobarbital data from oral and in- 
travenous administrations. 

Keyphrases 0 Pharmacokinetics-linear systems, polyexponential 
impulse response, analysis of input, model-independent method 
Model-independent analysis-linear pharmacokinetic systems, 
polyexponential impulse response, analysis of input 0 Drug input-linear 
pharmacokinetic systems, polyexponential impulse response, analysis 
by model-independent method 

A previous article (1) presented the theoretical deriva- 
tion and analysis of a novel input analysis method. The 
method allows a drug input to be evaluated in the presence 
or absence of any combination of intravenous bolus input 
and infusion input. Three approaches were discussed 
evaluation of the input rate based on a separate intrave- 
nous bolus experiment and an input (absorption) experi- 
ment, evaluation based on a merged intravenous bolus and 
input experiment, and evaluation based on a merged 
infusion and input experiment. 

The present work is confined to the first approach and 
is based on an exact mathematical solution to the decon- 
volution problem of linear pharmacokinetic systems with 
a polyexponential impulse response. Several methods for 
deconvolution have been presented (2-5). The Wagner- 
Nelson method usually is limited to one-compartment 
systems (61, and the methods investigated by Benet and 
Chiang (2) were shown to be very sensitive to errors in the 
data. The numerical deconvolution method presented by 
Game1 et al. (3) did not provide satisfactory results, pos- 
sibly due to numerical ill conditioning. Cutler (5) improved 
Gamel’s approach by using orthogonal polynomials to 
avoid the problem of ill conditioning. The improved 
method seems to be the most accurate method for nu- 

merical deconvolution. It appears to be superior to the 
many model-dependent methods (6-10) because it is based 
on fewer assumptions and, therefore, is more likely to re- 
sult in a meaningful evaluation of the drug input. 

This work compares the new method with Cutler’s ap- 
proach using Cutler’s simulated test data that contain 
various degrees of random noise (4,5). 

THEORY 

Let the concentration of drug in the blood, c * ( t ) ,  following an initial 
intravenous bolus dose, q* ,  be described by a multiexponential rela- 
tionship (1): 

Let c(t) denote the drug level resulting from an unknown input of a drug 
that, in the same subject with the same linear relationship between input 
and response, results in the blood level c*(t) (Eq. 1) when an intravenous 
bolus dose, q*,  is given. It has been shown (1) that the rate of input of the 
drug then is given by: 

0%. 2) 

where pi, i = 1,2, . . ., n - 1 are the roots of the (n  - 1)th-degree poly- 
nomial: 

Q ( X )  = 2 ai fi (*. - x j )  (Eq. 3) 
i - 1  j =1  

’ # i  
and b,, u = 1,2,. . ., n -1 are obtained from: 

1 

#i  

(Eq. 4) 

Integration of f ( t )  from time zero to time t yields the cumulative amount 
of input: 
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